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Novel NCN-pincer Pd-complex-bound norvaline derivatives
were synthesized. The N- and C-termini-alkylated Pd—norvalines
spontaneously assemble into fibrous aggregates to form supra-
molecular gels, in which the NCN-pincer Pd complex moieties
assemble in a highly oriented manner.

Self-assembly of functionalized amino acids and peptides is
currently of interest as a method of fabricating highly ordered
arrays of functional components.'> Various amino acids and
peptides bearing photo-,3 electronically, and catalytically’ active
auxiliaries have been synthesized and successfully demonstrated
as useful assembly components for supramolecular functional
materials consisting of arrayed functionalities. Metalated amino
acids and peptides that conjugate to functional organometallics
are expected to be useful for this purpose; however, only a few
reports on peptides currently exist,’ and amino-acid-based metal
assembly remains largely uninvestigated.’

We have found that Pd-complex-bound peptides efficiently
self-assemble into fibrous aggregates to afford a supramolecular
gel, in which the formation of a well-regulated Pd array was
observed.® We conjectured that supramolecular gelation of
metalated amino acids can also be employed to afford precisely
controlled metal arrays. Here we report that the newly
synthesized Pd-bound amino acids 1-4 (Figure 1a) exhibited
an efficient self-assembly ability and afforded a supramolecular
gel, in which a highly ordered array of Pd complexes formed.
The norvaline derivatives 1-4 are covalently conjugated to an
NCN-pincer Pd complex, [PdCI(dpb)],® at the end of their side
chains. The inert C-C covalent linkages to the robust cyclo-
metalated [PdCl(dpb)] complexes were expected to prevent both
dissociation and decomplexation of the Pd complexes under
acidic, basic, and high-temperature conditions during synthetic
transformations.

The Pd-bound norvaline derivative 1 was prepared by a
modified procedure based on Taylor’s!® and van Koten’s'!
methods. The Suzuki-Miyaura coupling reaction of the 9-BBN
adduct of protected L-allylglycine 5 (98% ee) and [PdCl(dpb-
Br)] (6)° gave [PdCl(dpb)]-bound L-norvaline 1 in 72% yield
(Scheme 1). Chiral high-performance liquid chromatography
(HPLC) analysis confirmed that no loss in optical purity
occurred.'?> The absolute configuration around the a-carbon
of 1 was unequivocally determined by synchrotron single-
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Figure 1. a) NCN-pincer Pd-complex-bound norvaline deriv-
atives. b) X-ray crystal structure of 1.
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Scheme 1. Synthesis of NCN-pincer Pd-complex-bound nor-
valine 1. (a) 9-BBN, THF, 0°C for 5min then rt for 2h;
(b) [PdCI(dpb-Br)] (6), Pd(OAc),, S-Phos, K;PO4, THF-H,0—
DMF, rt, 18 h; (c) KCl, THF-H,O-DMF, rt, 1 h.

crystal X-ray analysis at the BL40XU beam line of SPring-8
(Figure 1b).!3 These results clearly proved the robustness and
stability of this norvaline-cyclometalated complex conjugate
motif. The bond lengths and angles of the [PdCI(dpb)] moiety of
1 closely resembled those of the parent [PACI(dpb)] (7),° which
suggests that the NCN-Pd unit retains its original chemical and
physical properties after conjugation.

As shown in Scheme 2, various functionalities can be
installed at the N- and C-termini of 1; N-Boc group deprotection
was achieved by a conventional HCl-dioxane hydrolysis to
produce the corresponding N-terminus free form of 1. Sub-
sequent condensation with dodecanoic acid afforded N-(n-
dodecanoyl)norvaline 2 in 88% yield by using DMT-MM.BF,
as the condensing reagent.'*!> The C-methyl ester group was
transformed into an aliphatic amide by the sequence of LiOH/
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Scheme 2. N- and C-Terminus modification of 1.

Figure 2. Thermoreversible gelation of 3 in toluene (6.0 x
10~2M): (a) toluene solution, (b) gel state, and (c) microscopic
image of toluene gel (x3000).

THF-H,0 hydrolysis and DMT-MM-BF, condensation with
an aliphatic amine in one flask: the C-alkylamidonorvaline 3
was obtained in 77% yield. The N-Boc of 3 can be further
transformed to the n-pentanoyl group to give double-tail Pd-
bound norvaline 4 in 62% yield by the same N-terminus
modification procedure (Scheme 2a). 'HNMR analysis of the
reaction mixture revealed that the [PdCI(dpb)] unit remained
unaffected during these N- and C-terminus transformations.

The alkylated Pd-complex-bound norvalines 3 and 4 in
various aromatic organic liquids self-assembled to form stable
supramolecular gels.'® For example, when a hot solution of 3 in
toluene was cooled to room temperature, the solution sponta-
neously lost its fluidity to afford a yellow opaque gel (Figures 2a
and 2b). The gel exhibited reversible sol-gel transitions in
repetitive heat—cool cycles, indicating that self-assembly through
noncovalent interaction is the underlying driving force to
gelation.

The entangled fibril network morphology of supramolecular
gel 3 was observed by high-performance digital microscopy in
the toluene-wet state (Figure 2c). Scanning electron microscopy
(SEM) observation of a Pt-coated xerogel of 3 also showed
similar fibrous aggregates.!” To investigate the self-assembled
structure of 3 in the gel state, IR and synchrotron X-ray
diffraction analyses were conducted. The N-H stretching
vibration of a swelling gel of 3 (120mM) showed a low-
frequency shift from 3437 to 3326cm™! in a toluene solution
(15mM). Two C=O stretching bands also shifted from 1712
and 1674 cm™! in the toluene solution to 1682 and 1650 cm™!,
respectively, in the toluene gel. These results strongly support
the formation of intermolecular antiparallel amide—amide hydro-
gen bonds in the gel state. The wide-angle X-ray (WAX) pattern
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Figure 3. Cryo-TEM images of gel fibril of 3 obtained from
toluene gel (6.0 x 1072 M).

Figure 4. Selected area electron diffraction of the gel fibril.

of a xerogel of 3 prepared by evacuating a 100 mM toluene gel
of 3 showed two broad peaks at 26 = 13.6 and 16.6° (d spacing
0.42 and 0.35nm),'® which represent the distances of hydrogen
bonding in the B-sheet and aromatic T—T stacking between the
[PACI(dpb)] moieties, respectively. Indeed, the w—m stacking
association of [PdCl(dpb)] moieties was definitely observed in
the single-crystal X-ray structure and 'HNMR dilution experi-
ment.'” Two peaks in the small-angle X-ray scattering (SAXS)
pattern at 260 = 3.04 and 1.50° (d spacing 1.88 and 3.81nm,
respectively)'® demonstrated the existence of a periodically
layered structure. The layered structure was directly confirmed
by cryo-transmission electron microscopy (TEM) observations,
which revealed finely striped nanostructure (Figure 3). Selected
area electron diffraction showed streaky lines due to the layered
structure and diffraction spots corresponding to 0.38 and 0.42
nm, which agree well with the hydrogen bonding and 7—m
stacking distances obtained from WAX analysis (Figure 4).
Unfortunately, higher-order (4kl) diffraction could not be
obtained; however, the rectangular-like lattice with no (001)
diffraction (dashed circles) strongly supported the twofold screw
axis symmetry arising from the antiparallel S-sheet self-
assembly?® determined by IR analysis.

Figure 5 illustrates a proposed gelation mechanism. It is
reasonable to assume that, as a first step, hydrogen bonding
between the amide groups of the norvaline derivatives induces
self-assembly, which forms B-sheet-type aggregates. The im-
portance of hydrogen bonding was confirmed in a gelation
test of C-methyl ester norvaline 2, which showed no gelation
properties because it lacked the C-amide group. Importantly, the
NCN-Pd units were also assembled along the highly organized
B-sheet scaffold because of their T-7r stacking interactions. The
resulting fibrous self-assembly elongates to form macroscopic

www.csj.jp/journals/chem-lett/


http://www.csj.jp/journals/chem-lett/

196

Fibrous
structure

Aggregation Gelation
= . -
—_— N -

: Organic

| solvent
Fibrous

aggregate

Figure 5. Proposed mechanism of gelation of 3.

fibril objects as the layered structure grows. Interfiber cross-
linking or branching proceeds, forming entangled fibrous
networks that become a gel by entrapping solvent molecules
in the network.

In conclusion, we successfully prepared chemically and
physically stable Pd-complex-bound amino acid derivatives.
Hydrogen-bonding-based self-assembly of the metalated amino
acids and cooperatively formed 77— stacking of [PdCl(dpb)]
moiety enabled us to fabricate well-regulated Pd arrays along
with a B-sheet-type supramolecular formation.'® Metal aggre-
gation based on a supramolecular gel template will provide an
efficient methodology for producing functional organometallic
materials.
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